Thursday 10 July 2014

Phase diagrams


Many of the engineering materials possess mixtures of phases, e.g. steel, paints, and composites. The mixture of two or more phases may permit interaction between different phases, and results in properties usually are different from the properties of individual phases. Different components can be combined into a single material by means of solutions or mixtures. A solution (liquid or solid) is phase with more than one component; a mixture is a material with more than one phase. Solute does not change the structural pattern of the solvent, and the composition of any solution can be varied. In mixtures, there are different phases, each with its own atomic arrangement. It is possible to have a mixture of two different solutions!
A pure substance, under equilibrium conditions, may exist as either of a phase namely vapor, liquid or solid, depending upon the conditions of temperature and pressure. A phase can be defined as a homogeneous portion of a system that has uniform physical and chemical characteristics i.e. it is a physically distinct from other phases, chemically homogeneous and mechanically separable portion of a system. In other words, a phase is a structurally homogeneous portion of matter. When two phases are present in a system, it is not necessary that there be a difference in both physical and chemical properties; a disparity in one or the other set of properties is sufficient.
There is only one vapor phase no matter how many constituents make it up. For pure substance there is only one liquid phase, however there may be more than one solid phase because of differences in crystal structure. A liquid solution is also a single phase, even as a liquid mixture (e.g. oil and water) forms two phases as there is no mixing at the molecular level. In the solid state, different chemical compositions and/or crystal structures are possible so a solid may consist of several phases. For the same composition, different crystal structures represent different phases. A solid solution has atoms mixed at atomic level thus it represents a single phase. A single-phase system is termed as homogeneous, and systems composed of two or more phases are termed as mixtures or heterogeneous. Most of the alloy systems and composites are heterogeneous.
It is important to understand the existence of phases under various practical conditions which may dictate the microstructure of an alloy, thus the mechanical properties and
usefulness of it. Phase diagrams provide a convenient way of representing which state of aggregation (phase or phases) is stable for a particular set of conditions. In addition, phase diagrams provide valuable information about melting, casting, crystallization, and other phenomena.






for more click on the links below
  1. wikipedia-phase diagram
  2. http://www.southampton.ac.uk/~pasr1/build.htm
  3. nptel iitk





No comments:

Post a Comment